标准规范下载简介和部分内容预览:
0069 泰达市民文化广场工程施工测量方案泰达市民文化广场工程施工测量方案是确保项目顺利实施和高质量完成的重要技术保障。本方案旨在通过科学、精确的测量手段,为工程建设提供准确的数据支持,确保工程按照设计图纸和规范要求进行施工。
测量目标本方案的核心目标是通过对场地高程、平面位置及建筑物结构的精准测量,保证施工过程中的定位、放线和标高等关键环节符合设计要求,同时为后续的验收工作提供可靠依据。
主要内容1.控制网建立:在施工现场布设平面控制网和高程控制网,作为整个工程测量的基础。使用全站仪和水准仪等设备,确保控制点的精度满足规范要求。2.施工放样:根据设计图纸,对广场的主要构筑物(如舞台、喷泉、步行道等)进行精确放样。重点控制各要素间的相对位置关系,避免偏差累积。3.沉降观测:在施工期间及竣工后,定期对基础和主体结构进行沉降观测,及时发现并处理可能存在的问题。4.质量控制:严格执行国家相关测量标准,采用双检制和复核制,确保所有测量数据准确无误。5.信息化管理:利用现代测量技术和软件,实现数据采集、处理和分析的自动化,提高工作效率。
技术措施使用先进的GPS定位系统和全站仪进行精确定位;配备专业测量团队,确保操作规范、数据可靠;定期校准仪器设备,减少人为误差。
通过以上措施,本方案能够有效指导泰达市民文化广场的施工测量工作,确保工程质量达到预期目标szdb/z 338-2018 商品质量调查评价指南,为项目的成功交付奠定坚实基础。
(3)柱顶及平台模板抄平
柱子模板校正好后,选择不同行列的2~3 根柱子,从柱子下面已测设好的1m 线标高点,用钢尺沿柱身向上量距,引测2~3 个相同的标高点于柱子上端模板上。在平台上置水准仪,以引测上来的任一标高点作为后视,施测各柱顶模板标高,并闭合于另一点作为校核。
在第一层的柱子和平台浇筑好后,从柱子下面的已有标高点(通常是1m 线)向上用钢尺沿柱身量距。
(1)标高的竖向传递,应用钢尺从首层起始高程点竖直量取,当传递高度超过钢尺长度时,应另设一道标高起始线,钢尺需加拉力、尺长、温度三差改正。
(2) 每栋建筑物应由三处(选择三个内控点)分别向上传递,标高的允许误差见下表5。
标高测量允许误差 表5
(3)施工层抄平之前,应先校测首层传递上来的三个标高点,当校差小于3mm时,以其平均点引测水平线。抄平时,应尽量将水准仪安置在测点范围的中心位置,并进行一次精密定平,水平线标高的允许误差为±3mm。
4. 内控制测量方法 零层板施工完后应将控制轴线引测至建筑物内。根据施工前布设的控制网基准点及施工过程中流水段的划分,在各建筑物内做内控点(每一流水段至少2~3个内控基准点),埋设在首层相应偏离轴线1m的位置。基准点的埋设采用10cm×10cm钢板,钢针刻划十字线,钢板通过锚固筋与首层楼面钢筋焊牢,作为竖向轴线投测的基准点。基
准点周围严禁堆放杂物,向上各层在相应位置留出预留洞(15cm×15cm) 。内控点平剖面图见图4、图5。
竖向投测前,应对钢板基准点控制网进行校测,校测精度不宜低于建筑物平面控制网的精度,以确保轴线竖向传递精度。轴线竖向投测的允许误差见表6.
轴线竖向投测允许误差 表6
轴线控制点的投测,采用激光准直仪,先在底层基点处架设激光准直仪,调校到准直状态后,打开激光电源,就会发射和该点铅垂的可见光束。然后在楼板开口处用接收靶接收。通过无线对讲机调校可见光光斑直径,达到最佳状态时,通知观测人员逆时针旋转准直仪,这样在接收靶处就可见到一个同心圆(光环),取其圆心作为向上的投测点,并将接收靶固定(图6)。同样的办法投测下一个点,保证每一施工段至少2~3个点,作为角度及距离校核的依据。控制轴线投测至施工层后,应组成闭合图形,且间距不得大于所用钢尺长度。施工层放线时,应先在结构平面上校核投测轴线,闭合后再测设细部轴线。 在施工过程中,每当施工平面测量工作完成后,进入竖向施工,在施工中,
每当柱浇筑成型拆掉模板后,应在柱侧平面投测出相应的轴线,并在墙柱侧面抄测出建筑1m 线或结构1m 线。(1m 线相对于每层楼板设计标高而定),以供下道工序的使用。
当每一层平面或每段轴线测设完后,必须进行自检、自检合格后及时填写报验单,报送报验单必须写明层数、部位、报验内容并附一份报验内容的测量成果表,以便能及时验证各轴线的正确程度状况。
钢结构及膜结构安装测量
钢结构及膜结构安装测量是一项非常重要的测量工作,如何采用先进的测量技术将整个壳体按照设计图纸准确无误地安装就位,将直接关系到工程的进度和质量。
安装测量前应建立较高精度的安装测量控制网(一级建筑控制网)。要求测角中误差±5″,边长相对中误差1/30000。以下分别介绍地脚螺栓的埋设及肋梁安装测量。
测定平面位置时,将两台经纬仪架设在纵横轴线控制基准点上,后视同一轴线对应的控制基准点,将轴线投测到与地脚螺栓定位板面同高度的木方子上并用红色三角标记, 将其与定位板上纵横柱定位轴线比较,根据偏差情况,调整定位板,使得定位板的纵横轴线与两台经纬仪投测的轴线完全重合为止,定位板的纵、横轴线允许误差为0.3mm。在灌注基础混凝土前,检查定位板上的纵横轴线,与设计位置的允许误差为0.3mm。相邻柱中心间距测量误差为1mm, 第一根钢柱至第n 根钢柱间距的测量允许误差为,量距时,采用一级钢尺并加上尺长、温度、垂曲三项改正。在混凝土浇筑完后初凝前,应检测定位板上的中心线,如发现偏差,应即刻校正,直至符合精度要求为止。
2. 地脚螺栓标高测量方法
地脚螺栓标高测量采用DS2 水准仪从高程控制点直接引测到辅助安装的木方子上,用红油漆做好标记,根据引测的标高点,调整定位板的高度到设计位置,标高测量的允许误差为±1mm 。
(二)主塔楼锥形钢架及膜结构安装测量
对于主塔楼锥形钢架及膜结构的拼装及安装测量,我们拟采用全站仪三维测量方案。
如图7 所示,在待测物方任取A、B 两点,将其在水平面(取仪器三轴交点处的水平面)内投影点的连线为X 轴方向,仪器中心为坐标原点,过原点在水平面面内垂直于X 轴的方向为Y 轴,垂直于XY 平面的轴为Z 轴,构成右手直角坐标系。
2. 测量原理全站型电子速测仪(简称全站仪)是具有测距、测角能力的先进仪器,因此根据极坐标法测定物点的三维坐标为全站仪三维测量系统提供了理论依据和技术保障。
由于A、B 两点的水平投影在X 轴方向上,则有YA=YB,即:
由上式可以看出,β值取决于仪器中心及选取的A、B 两点的位置关系,解求β的工作也即完成了全站仪三维测量系统的定向。
对于物方空间的任意点P 在上述坐标系中的坐标为:
式中HP =αP −αA 、SP 为P 点的斜距,VP 为P 点的天顶角,αP为P 点的水平度盘读数,其余符号同前。
主塔楼锥形钢架及膜结构安装安装测量过程中,三维测量坐标系的选择需根据安装现场平面布置图具体确定,由于场区原有场区平面控制网不能完全满足主塔楼锥形钢架安装测量精度的要求,因此必须建立精度较高的安装测量控制网。
分析全站仪三维测量系统的点位精度,主要有以下三个方面的因素:仪器的系统误差、仪器的偶然误差、反射装置(目标)误差。这里主要分析前两者对点位精度的影响。
根据误差传播定律可得:
式中,mS 为P 点距离测量中误差;
mV 为P 点天顶角测量中误差;
mH 为水平角测量中误差;
mβ为定向时确定β角的中误差。
泰达市民文化广场是一个标志性重要建筑,在采用科学合理的降水方式及边坡支护的前提下,也必须对其本身及周边环境进行沉降变形监测,从而为整个施工过程提供安全保障,同时也为以后的形变测量提供参考依据。对周边环境,如护坡桩位移、东城西、东路等按照二等测量要求进行观测。
(1)沉降基准点布设原则:1)布设的沉降基准点必须坚固稳定且便于长期保存。2)为了对沉降基准点进行相互检查,沉降基准点的数目应不少于三个,以保证沉
3)沉降基准点与观测点的距离不宜太远,以保证观测精度。
4)沉降基准点须埋设在建筑物的压力传播范围以外,同时为了防止沉降基准点受
到冻胀的影响,沉降基准点的埋设深度不小于1.5m,以保证沉降基准点的稳定。沉降观测基准点埋设在变形区以外,数量三个,按国家二等水准测量的技术要求施测,每站高差中误差±0.3mm, 闭合差±
0.6mm×n0.5 。
(2)沉降基准点埋设方法:
基点埋设参照《工程测量规范》及有关变形观测基点埋设标准进行(见图8)。
埋设规定进行沉降点的埋设。变形观测点是直接反映建筑物变形的参照点,应与变形体固结为一体,布设在能敏感反映变形的位置。沉降点埋设如下图9 所示。
图9 变形观测点平面图图 10 沉降观测点标志
在承重墙柱上沉降观测点标志采用内藏式,用Φ32 电锤在设计位置位置打孔,将直径28mm 预埋件放入孔内,周围用环氧树脂填充使牢固,观测时将活动标志旋紧,测毕取出外旋保护盖,既不影响原有建筑物的外观又起到保护标志的作用(见图10)。
4. 沉降观测周期及期限
(1) 沉降观测周期按每两个结构观测一次,直至封顶,封顶后每月观测一次,直至竣工。
(2)出现不均沉降时,根据情况增加观测次数。
(3)施工期间因故停工超过三个月,应在停工时及复工前进行观测。
(4)结构封顶至工程竣工沉降周期应符合下列要求:
均匀沉降且连续三个月内平均沉降量不超过1mm 时,每三个月观测一次;连续二次每三个月平均沉降量不超过2mm 时,每六个月观测一次;外界发生剧烈变化时应及时观测;封顶后应每六个月观测一次,直至基本稳定(1mm/100d)为止。
5.沉降变形资料的提交
银行室内外装饰工程施工组织设计(1) 垂直位移量成果表;
(2) 观测点位置图;
(3) 荷载、时间、位移量、曲线图;
(4) 变形分析报告。
通过对支护结构的位移变形观测和基底土标高变化的观测,准确了解支护结构和基底土的变化情况,以利于对变形和应力的发展作出评价,从而判定支护结构的安全性。
(1)支护桩顶部的位移;
某住宅小区智能化系统施工方案(2)混凝土垫层裂缝观测;