标准规范下载简介和部分内容预览:
架空绝缘配电线路设计技术规程架空绝缘配电线路设计技术规程是针对架空绝缘配电线路的设计、施工和运行维护制定的技术规范文件。该规程旨在确保配电线路的安全性、可靠性和经济性,适应现代化配电网的发展需求。以下是其主要内容的简要介绍:
1.适用范围规程适用于35kV及以下电压等级的架空绝缘配电线路的设计与建设。它涵盖了从线路路径选择到材料选用、施工工艺以及验收标准的全过程。
2.设计原则安全性:确保线路在各种工况下均能满足电气绝缘要求,防止因短路或接地故障引发事故。可靠性:通过合理选择导线截面、杆塔类型和绝缘水平,提高线路运行的稳定性。经济性:综合考虑投资成本与长期运行效益,在满足技术要求的前提下优化设计方案。环保性:减少对环境的影响,避免线路建设过程中破坏生态资源。
3.主要技术内容线路路径规划:根据地形地貌、气象条件及负荷分布等因素确定最佳路径。导线选型:推荐使用符合国家标准的绝缘导线,并依据载流量、机械强度等参数进行选型。绝缘配合:明确不同电压等级下的绝缘配置标准,以应对雷击、污秽等外部因素的影响。杆塔结构:规定各类杆塔(如钢筋混凝土杆、铁塔)的设计要求及其荷载计算方法。防雷保护:提出有效的防雷措施,如安装避雷器或架设避雷线,降低雷击跳闸率。施工与验收:详细说明施工工艺流程及质量控制要点交通运输大厦冬期施工方案,并提供验收标准。
4.特点与意义相比于传统裸导线线路,架空绝缘配电线路具有更高的安全性和抗干扰能力,尤其适合城市化地区或自然灾害频发区域。该规程为我国配电网升级改造提供了重要指导,推动了电力系统的智能化和高效化发展。同时,它也为工程技术人员提供了统一的技术依据,促进了行业的规范化管理。
6.7 绝缘子的组装方式应防止瓷裙积水。
6.8 金具的使用安全系数不应小于2.5。
7.1 分相架设的中压绝缘线三角排列、水平排列、垂直排列均可,中压绝缘线路可单回架设,宜可以多回路同杆架设。
集束型低压架空绝缘电线宜采用专用金具固定在电杆或墙壁上;分相敷设的低压绝缘线宜采用水平排列或垂直排列。
7.2 城市中、低压架空绝缘线路在同一地区同杆架设,应是同一区段电源。
7.3 分相架设的低压绝缘线排列应统一,零线宜靠电杆或建筑物,并应有标志,同一回路的零线不宜高于相线。
7.4 低压架空绝缘线台区中的路灯线也应是架空绝缘电线,低压路灯绝缘线在电杆上不应高于其它相线或零线。
7.5 沿建筑物架设的低压绝缘线,支持点间的距离不宜大于6m。
7.6 中、低压架空绝缘线路的档距不宜大于50m,中压耐张段的长度不宜大于1km。
7.7 中压架空绝缘配电线路的线间距离应不小于0.4m,采用绝缘支架紧凑型架设不应小于0.25m。
7.8 同杆架设的中、低压绝缘线路,横担之间的最小垂直距离和导线支承点间的最小水平距离见表3。
表3 同杆架设的中低压绝缘线路横担之间的最小垂直距离
和导线支承点间的最小水平距离 m
7.9 中压架空绝缘电线与35kV及以上线路同杆架设时,两线路导线间的最小垂直距离见表4。
表4 中压架空绝缘电线与35kV及以上线
路同杆架设时的最小垂直距离 m
7.10 中压架空绝缘线路的过引线、引下线与邻相的过引线、引下线及低压线路的净空距离不应小于0.2m。
中压架空绝缘电线与电杆、拉线或构架间的净空距离不应小于0.2m。
7.11 低压架空绝缘导线与电杆、拉线或构架的净空距离不应小于0.05m。
8 电杆、拉线和基础
8.1 架空绝缘配电线路的杆塔分为直线杆型、耐张杆型和混合杆型三类。直线杆型包括直线杆、直线转角杆;耐张杆型包括耐张杆、转角杆和终端杆;混合杆型包括T接杆、十字杆、电缆杆等。
直线转角杆杆的转向不宜大于15°。
8.2 绝缘线路一般采用水泥杆,条件不允许时亦可采用铁塔和钢管塔。
8.3 各种电杆,应按下列荷载条件进行计算:
a)最大风速、无冰、未断线;
b)覆冰、相应风速、未断线;
c)最低气温、无冰、无风、未断线(适用于转角杆和终端杆)。
8.4 耐张杆和T接杆应考虑断线情况,采用下列荷载进行计算:
a)在同一档内断两相导线,无风、无冰(适用于分相架设单回或多回线路);
b)在同一档内断一根承力索,无风、无冰(适用于用承力索架设单回或多回线路),断线情况下,所有导线张力均取导线最大使用张力的70%,所有承力索张力均取承力索最大使用张力的80%。
8.5 配电线路的钢筋混凝土杆,应尽量采用定型产品,电杆构造的要求应符合有关国家标准的规定。
8.6 钢筋混凝土杆的强度计算,应采用安全系数计算方法。普通钢筋混凝土杆的强度设计安全系数不应小于1.7;预应力混凝土杆的强度设计安全系数不应小于1.8。
混凝土及钢材的设计强度应符合SDJ3的规定。
8.7 需要接地的普通钢筋混凝土杆,应设置接地螺母。接地螺母与主筋应有可靠的电气连接。
采用预应力混凝土杆时,其主筋不应兼作接地引下线。
8.8 转角杆的横担,应根据受力情况确定。一般情况下,15°以下转角杆,可采用单横担;15°~45°转角杆,宜采用双横担;45°以上转角杆,宜采用十字横担。
转角杆宜可不用横担,导线垂直单列式。
8.9 配电线路的金属横担及金属附件应热镀锌。
横担应进行强度计算,选用应规格化,铁横担的最小规格见附录E。
8.10 拉线应采用镀锌钢绞线,其强度设计安全系数应不小于2,最小规格不小于35mm2。
8.11 拉线应根据电杆的受力情况装设。拉线与电杆的夹角宜采用45°,如受地形限制,可适当减少,但不应小于30°。
跨越道路的拉线,对路面中心的垂直距离不应小于6m,对路面的垂直距离不应小于4.5m,拉桩杆的倾斜角宜采用10°~20°。
8.12 跨越电车行车线的水平拉线,对路面中心的垂直距离,不应小于9m。
8.13 钢筋混凝土电杆的拉线从导线之间穿过时,必须装设拉线绝缘子或采取其它绝缘措施,拉线绝缘子距地面不应小于2.5m。
8.14 拉线棒的直径应根据计算确定,但其直径不应小于16mm。
拉线棒应热镀锌。严重腐蚀地区,拉线棒直径应适当加大2~4mm或采取其它有效的防腐措施。
8.15 电杆基础应结合当地的运行经验、材料来源、地质情况等条件进行设计。
8.16 电杆的埋设深度,应进行倾覆稳定验算,单回路的配电线路,电杆最小埋设深度见表5。
表5 电杆的最小埋设深度 m
遇有土松软、流沙、地下水位较高等情况时,应做特殊处理。
8.17 电杆基础的上拔及倾覆稳定安全系数不应小于下列数值:
a)直线杆,1.5;
b)耐张杆,1.8;
c)转角杆、终端杆,2.0。
8.18 钢筋混凝土基础的强度设计安全系数不应小于1.7,预制基础的混凝土标号不宜低于200号。
8.19 绝缘配电线路采用铁塔或非定型产品混凝土杆时,可按SDJ3执行。
9 变压器台和开关设备
9.1 配电变压器台应设在负荷中心或重要负荷附近,且便于更换和检修设备的地方,其配电变压器容量应考虑负荷的发展、运行的经济性等。
9.2 下列电杆不宜装配配电变压器台:
a)转角杆、分支杆;
b)设有中压接户线或中压电缆的电杆;
c)设有线路开关设备的电杆;
d)交叉路口的电杆;
e)低压接户线较多的电杆。
9.3 柱上式变压器台宜安装315kVA及以下变压器。315kVA以上的变压器宜采用室内布置或与其它高低压元件组成箱式变电站布置。
9.4 柱上配电变压器台的底部距地面高度不应低于2.5m。安装变压器后,配电变压器台的平面坡度不大于1/100。
9.5 柱上配电变压器的一、二次进出线均应采用架空绝缘线,其截面应按变压器额定容量选择,但一次侧引线铜芯不应小于16mm2,铝芯不应小于25mm2。
变压器的一、二次侧应分别装设熔断器,一次侧熔断器的底部对地面的垂直高度应不低于4.5m;二次侧熔断器的底部对地面的垂直高度应不低于3.5m。各相熔断器间的水平距离:一次侧不应小于0.5m,二次侧不应小于0.2m。
9.6 熔断器、避雷器、变压器的接线柱与绝缘导线的连接部位,宜进行绝缘密封。
9.7 熔断器应选用国家定型产品,并应与负荷电流、运行电压及安装点的短路容量相配合。
9.8 配电变压器的熔丝选择宜按下列要求进行:
——容量在100kVA及以下者,一次侧熔丝额定电流按变压器容量额定电流的2~3倍选择。
——容量在100kVA以上者,一次侧熔丝额定电流按变压器容量额定电流的1.5~2倍选择。
——变压器二次侧熔丝(片)按二次侧额定电流选择。
db12/1120-2022标准下载9.9 中压绝缘配电线路在下列地区宜装设开关设备:
a)较长的主干线或分支线;
b)环形供电网络;
c)管区分界处。
设备与绝缘导线的连接部位应装设专用绝缘罩。
9.10 在配电线路上装设电容器时,应按有关行业标准的规定执行。
10.1 中压绝缘线路,在居民区的钢筋混凝土电杆宜接地,铁杆应接地南京大学体育馆工程施工组织设计,接地电阻均不应超过30Ω。
10.2 带承力线的架空绝缘配电线路其承力线应接地,其接地电阻不应大于30Ω。
10.3 柱上开关应装设防雷装置,经常开路运行的柱上开关两侧,均应装设防雷装置,其接地装置的接地电阻不应大于10Ω。开关金属外壳应接地,接地电阻不大于10Ω。