某地铁一期7 标段施工方案

某地铁一期7 标段施工方案
积分:20
特惠
VIP全站资料免积分下载
立即下载
同类资料根据编号标题搜索
文档
仅供个人学习
反馈
文件类型:.zip
资源大小:1.74M
资源类别:施工组织设计
资源属性:
会员资源

施组设计下载简介:

内容预览随机截取了部分,仅供参考,下载文档齐全完整

某地铁一期7 标段施工方案

第一章某地铁一期7标段施工组织设计 2

第3节主要技术标准及设计原则 4

第4节工程自然条件 11

DB/T29-86-2020标准下载第5节盾构法隧道 21

第6节联络通道及泵房 71

第9节盾构隧道与车站的接口技术条件 87

第10节环境保护与沉降控制 87

第11节补充地质勘测要求 94

第12节设计质量保证体系及进度计划 95

某地铁一期7标段施工组织设计

1.1.1业主提供的标书

业主提供的`标书《深圳地铁一期工程第七标段施工隧道

盾构工程招标文件》包含:第Ⅰ卷商务部分第Ⅱ卷技术规范第Ⅲ卷工程量清单第Ⅳ卷业主的图纸第Ⅴ卷现场参考资料除招标文件外,还包含业主发出的有关补遗通知

1.1.2业主提供的图纸

业主提供的图纸包含业主招标文件第Ⅳ卷第十章第103节“业主的图纸”内容。

第二节设计施工联合体协议

1.2.1设计施工联合体协议

《成立设计施工联合体对“深圳地铁一期工程第七标段盾构隧道工程”进行投标的协议》

1.2.2设计投标协议

《关于“深圳地铁一期工程第七标段盾构隧道工程”设计投标的协议》

深圳地铁一期工程由两条线组成:一号线从罗湖至会展中心,四号线从皇岗至文化中心。干线总长19.468公里,包括17个车站(16个地下车站和一个地面车站)。本次投标的盾构第七标段为天虹~岗厦区间。第七标段天虹~岗厦区间隧道从天虹站西端顺深南中路向西延伸,穿过华富路至福天路口,然后向南离开深南中路,下穿福天河,经过一片荔枝园,过福华路立交桥和福华新村后,再向西到达岗厦站。盾构区间隧道起讫里程CK5+338~CK7+108.601,总长度3471.6m,其中右线隧道长1728.1m,左线隧道长1743.5(右线长链8.283m,左线长链23.720m)。隧道纵坡为“V”型坡,最大纵坡25‰,盾构始发井为设置在区间中部的中间井,在天虹站端、岗厦站端设置起吊井。盾构中间井起讫里程为CK6+325.00~CK6+375.00(左CK6+311.408~左CK6+361.408),中间井至天虹站的盾构推进长度为986.2m(左线推进长度972.608m),至岗厦站的盾构推进长度为741.884m(左线推进长度为770.913m)。该标段盾构机从区间中部的中间井下井始发,一台盾构机沿右线掘进至天虹站后解体、起吊,运至中间井安装,再沿左线掘进至天虹站后起吊;另一台盾构机沿右线掘进至岗厦站后解体、起吊,运至中间井安装,再沿左线掘进至岗厦站后起吊、拆卸退场。

第二节工程范围本工程的设计包括第七标段的区间圆形盾构隧道,以及该标段两段区间内双线隧道间的1条联络通道/泵房、盾构区间中间井以及与车站和中间井相连接的8个洞门等永久工程的`设计和其它临时工程的设计。

主要技术标准及设计原则

本工程的设计主要技术标准及设计原则应满足业主招标文件的要求。

3.1.1.1 平面最小平面曲线半径:300m曲线间水平夹直线最小长度:20m

3.1.1.2 纵断面最小竖曲线半径:3000m最大坡度:一般为30‰

标称隧道限界为5200mm。实际的隧道直径和轮廓,应使一个虚拟的标称直径为5200mm的以理论轴线为中心的圆盘,在任何一个垂直于业主图纸所定义的隧道理论轴线的平面内通过隧道而不碰触隧道的任何地方。

隧道管片的内径不应大于5500mm。

3.1.3地面沉降控制

如果估算的最大沉降大于15mm,邻近建筑物的不均匀沉降应限制在1/500的基础倾斜之内,

3.1.4永久工程设计寿命

所有工程的设计寿命为100年。管片混凝土的强度等级最小应为C50,抗渗等级为S10。

洞门混凝土等级不应低于C40,并采用防水混凝土。

联络通道/泵房混凝土等级不应低于C30,并采用防水混凝土。

隧道衬砌拱部:A级;不允许出现渗水、漏水和水斑现象。

隧道衬砌拱腰、拱底竖井:B级;可允许出现少量渗漏,但这种渗漏应使施工缝混凝土表面的水斑限制在最低限度,而且不应出现肉眼可见的水流。

3.1.7最大裂缝宽度

管片:最大裂缝允许宽度为0.2mm。 联络通道和洞门:最大裂缝允许宽度为0.3mm。 3.1.8地震

本工程按7度地震烈度设防。

地下铁道设计规范(国标)

地下铁道工程施工与验收规范

铁路隧道喷锚构筑法技术规则

软土地基深层搅拌加固技术规程

地下防水工程施工及验收规范

锚杆喷射混凝土支护技术规范

钢结构工程施工及验收规范

钢筋混凝土高层建筑结构设计与施工规程

混凝土结构试验方法标准

混凝土结构施工与验收规范

混凝土外加剂应用技术规范

土层锚杆设计与施工规范

建筑防腐蚀工程施工及验收规范

普通混凝土用砂质量标准及检验方法

普通混凝土用碎石及卵石质量标准及检验方

污水排入城市下水道水质标准

工业厂房可靠性鉴定标准

深圳建筑深基坑支护技术规范

深圳地区地基处理技术规范

建筑灭火器配置设计规范

水污染物排放标准(广东省)

深圳市经济特区城市供水用水条例

建筑施工场地界噪声限值

广东省劳动安全卫生条例

第三节主要设计原则设计原则的拟定要以能满足工程的实际情况,达到合同规定的技术标准及有关设计规范的要求为目的。主要设计原则为:

1、工程结构安全等级为一级。

2、结构设计按7度地震验算并设防。

3、结构设计按六级人防验算并设防。

4、在业主提供的初步设计文件的基础上,根据合同第Ⅱ卷《技术规范》规定的技术标准与要求,对本工程的初步设计进行优化并完成施工图设计。

5、本工程的设计应满足工程施工、地铁运营、防排水,以及场地、环境、规划的要求。

6、隧道管片的净空尺寸除满足标称隧道限界5200mm的规定外,还考虑盾构推进、管片安装、管片环椭变或进一步的位移等导致的各种偏差。

7、结构设计在满足强度和刚度的前提下,尚需满足防水防腐、防迷流和预埋件设置的要求。

8、管片衬砌环的直径变形控制在2‰D(D为管片外径);环缝张开不大于2mm,纵缝张开不大于3mm。

9、为便于管片制作、安装的系列化、定型化和规范化,通过规模效益达到节省投资的目的,管片设计根据各区间隧道的埋置深度、工程地质和水文地质条件,采用分段设计、综合分析、分类统一的原则。

10、在不考虑表面摩擦力时,结构抗浮安全系数不小于1.07;在考虑表面摩擦力时,结构抗浮安全系数不小于1.15。

深圳气候温和,平均年气温22.2℃,相对湿度79%。它是亚热带季风气候,夏天湿热。降水充足,年平均降水量1914.5m。年平均降雨天数144.7天。雨季为5月至9月。季风不定期出现,夏天和秋天经常遭台风袭击。

第二节工程地质与水文地质条件

根据业主提供的《深圳地铁一期工程盾构工程设计图纸(天虹~岗厦)》中的描述,本标段的工程地质与水文地质条件主要有以下特点:

第七标段天虹~岗厦区间地处台地、冲积平原,地形平坦,稍有起伏。沿线两侧建筑物密集,主要建筑物有天虹商场、航空大厦、上海宾馆、北方大厦、福田大厦、深圳文化大厦、高科利花园大厦、福华路立交桥、福华新村等,地下各种管线、管道纵横。

4.2.2工程地质条件

本段勘探范围内上覆第四系全新人工堆积层(Q4ml)、冲积层(Q4al)及第四系残积层(Qel),下覆燕山期花岗岩(r53)侵入体、构造角砾岩、构造角砾,现将其岩性特征由新至老分述如下:

(1)第四系全新统人工堆积层

(2)第四系全新统冲积层(Q4al)

⑤、粉砂:深灰色、黄褐色、松散~稍密,饱和,厚0~2.9m。混粘性土,局部夹粘性土薄层,呈透镜体状分布,分布于CK6+300~+CK6+500段。

⑥、细砂:褐黄色,松散,很湿~饱和,厚0~4.2m,混粘性土,仅于ZTG~29孔有所揭示。

⑦、中砂:颜色以灰、深灰色、黄褐色,灰白色为主,松散~中密,饱和,厚0~5.4m。混粘性土,局部夹粘性土薄层,呈透镜体状分布,分布于CK5+750~+CK6+950段。

⑧、粗砂:颜色以灰、深灰色、黑色为主,松散~中密,饱和,厚0~4.5m。混粘性土,呈透镜体状分布,分布于CK6+900~+CK7+050段。

⑨、砾砂:灰、深灰色、黄褐色、灰白色,松散~中密,饱和,厚0~10.3m。混粘性土,夹粘性土薄层,呈透镜体状分布,分布于CK5+634~+CK6+990段。

(3)、第四系残积层(Qel)

(4)燕山期花岗岩(r53)

新鲜岩石呈肉红、暗红色,中粗粒结构,块状构造,主要矿物成分哟长石、石英、云母,分布广泛。钻孔揭示深度范围内岩石按风化程度可以分为全风化、强风化,中等风化及微风化四个带。

③、中等风化岩:褐黄色、肉红色,手折不断,锤击可碎,钻进较难,石英、长石基本未风化,暗色矿物

紫红色、灰黄色,角砾结构,块状构造,角砾成分为花岗岩,呈胶结~半胶结状态,岩芯节理裂隙发育,节理面上具有檫痕,存在绿泥石化现象。视厚度14.8~>24.00m。按风化程度大致可分为全风化、强风化、中等风化及微风化四个带。

①、全风化岩:呈土状,厚3.0m。

②、强风化岩:呈碎石块状,厚3.6~4.1m。

③、中等风化岩:呈块、碎石状,厚4.8~11.2m。

④、微风化岩:呈块状,厚12.1m。

(6)构造角砾:褐黄色,角砾成分为花岗岩,粒径一般20~40mm,

含约 30%的断层泥。视厚度3.00m。2、土石工程分级、围岩类别及承载力标准值

Q4ml素填土(粘土)

Q4al素填土(粉质粘土)

②、场地内福田河以西,广泛分布透镜体状淤泥质粉质粘土:灰、黑色,含有机质及石英砂,流塑。层厚0~3.4m,为欠固结土,灵敏度为中等,r=17.5KN/m3,φ=100,C=9.6Kpa,工程性质很差。

根据初勘和详勘的钻探资料,结合《深圳市区域稳定性评价》资料综合分析,该区间存在两条近于平行断层F1,线路里程CK6+354~CK6+361(左CK6+340~左CK6+347),F2线路里程CK6+772~CK6+778(左CK6+742~CK6+748)。

4.2.4水文地质条件

本区间地下水按赋存条件可分为第四系孔隙潜水,基岩裂隙水和断层水。

第四系孔隙潜水勘探期间埋深2.0~6.9m,高程0.85~7.89m,主要含水层为第四系砂层,圆砾层,属于中等透水层。粘性土层和残积土层为弱含水层,相对隔水层。主要补给来源为大气降水,地下水水温26.0~31.00C,水位变幅0.5~1.0m。局部具有微承压性。F1、F2断层中具承压性,和第四系孔隙潜水、基岩裂隙水具水力联系,属于弱透水层。

经取样化验:台地段CK5+328.5~CK5+634(左CK5+328.5~左CK5+650)地下水对混凝土结构不具腐蚀性,对钢结构具弱腐蚀性;冲积平原段CK5+634~CK7+089.15(左CK5+650~左CK7+089.15)地下水对混凝土结构具弱~强分解性腐蚀、弱溶解性腐蚀、弱酸性腐蚀,对钢结构具弱酸性腐蚀性,综合评价腐蚀等级为强腐蚀。断层水对混凝土结构不具腐蚀性,对钢结构具弱腐蚀性。

本区间CK6+114处为福田河,旱季流量较小。地下水与福田河水力联系较紧密。经取样化验,福田河河水对混凝土结构具弱分解性腐蚀,对钢结构具弱腐蚀性。

土对混凝土结构、钢筋混凝土结构中的钢筋、钢结构不具腐蚀性。

4.3.1抗震设计评价

4.3.2砂层液化判别

深圳地区地震基本烈度为7度。

本场地无地震可液化层。

第一节隧道平纵断面布置

深圳地铁一期工程第七标段天虹~岗厦区间隧道从天虹站西端顺深南中路向西延伸,穿过华富路至福天路口,然后向南离开深南中路,下穿福天河,经过一片荔枝园,过福华路立交桥和福华新村后,再向西到达岗厦站。共分两段盾构段。

第七标段第一段中间始发井~天虹站,右线长约986.2米,左线长约972.6米总长约1959米;在CK6+350处建造一个盾构始发工作井,并由此开始采用盾构施工法向位于CK5+338.8处的盾构机到达和撤离井方向掘进。

第二段中间始发井~岗厦井,右线长约为741.9米,左线长约为770.9米,总长约1513米。在CK6+350处建造一个盾构始发工作井,并由此开始采用盾构施工法向位于CK7+108.601处的盾构机到达和撤离井方向掘进。

根据业主提供的招标资料中地质描述,天虹站~岗厦站区间地处台地、冲击平原,盾构隧道主要穿越砂层和粘性土层中通过,部分位于全风化~强风化的花岗岩中,局部位于中风化的花岗岩中。地下水一般位于2.0~6.9m,以孔隙潜水为主,水位变幅

0.5~1.0m,砂层透水性较好。

对于平面断面线型,要求最小平面曲线半径为300m;纵断面,要求最小竖曲线半径3000m。

5.1.2平面曲线地段:

选用最小半径300m进行了楔形环的设置。

楔形量25mm,R=300时,圆曲线段设置楔形环;缓和曲线段根据偏角设置楔形环;R>300时,圆曲线段沿缓和曲线均按偏角设置楔形环。

5.1.3纵向曲线地段:

半径为5000m时,不设楔形块,可在背千斤顶环面上分段粘贴石棉橡胶板,形成踏步形楔形环面,半径为3000m时,每10环衬砌管片标准环中加一环楔形环。

5.1.4各类管片数量统计

天虹站—岗厦站左右线总长:3472m

根据国内外经验,在盾构隧道区间采用有一定接头刚度的单层装配式管片衬砌,是合理和成功地。经过计算校核,本设计中采用的衬砌圆环的强度、最大裂缝宽度、变形、接缝张开及地表沉降控制等,即使在通过特殊地段时,均能满足标书的设计要求。而且单层衬砌施工工艺简明,工程实施周期短,由于衬砌厚度相对两层衬砌要少,可以节省材料,降低投资成本。由此,经过综合的技术和经济比较论证,并参考标书推荐衬砌类型,该隧道盾构衬砌采用单层装配式管片衬砌。

5.2.2隧道及管片具体参数

隧道采用单层装配式钢筋混凝土管片衬砌,根据招标文件参考初步设计及线路平纵曲线,对净空限制限界的要求,隧道内径选定为5500mm,管片厚为300mm,宽1200mm。为便于安装,衬砌环分为6块,下部三块标准块(2×SB1,SB2)的圆心角为

67.5o,两邻接块(SL1,SL2)的圆心角为67.5o,封顶块(SF)的圆心角为22.5o。使管片衬砌圆环受力合理,变形能得到控制,管片衬砌环在纵向按错缝式拼装,纵向接头为16处,按22.5°等角度布置。

标准块与邻接块管片环向面上设接头螺栓2只,纵向面上设置接头螺栓3只,螺栓采用直径M30,全用弯螺栓。弯螺栓连接的接头具有一定的自由度,十分便于手工安设,且手孔体积小,管片强度损失很小。同时受外界腐蚀而损坏管片的风险也很小。弯螺栓在德国、法国、英国、新加坡、丹麦等许多国家的地铁交通项目及国内地铁中广泛采用,这种接头系统都非常成功。

钢筋砼管片强度等级C50,抗渗等级不得小于1.0Mpa。衬砌环缝外弧侧设水膨胀型止水片预留槽,内弧侧设嵌缝槽。衬砌纵缝外侧同样设水膨胀型止水片槽,内侧设嵌缝槽。

5.2.3衬砌拼装方式

错缝安装施工方便,可在整体上控制安装精度,而且在软弱地层条件下有助于降低衬砌椭圆变型,增强衬砌的整体受力,因此衬砌环采用错缝拼装方式。本投标设计建议施工拼装采用三种方案。第一方案为,以两环为一组,第一环左偏11.250,第二环右偏11.250;第二方案为,以两环为一组,第一环左偏22.50,第二环右偏22.50方案;第三方案为,以三环为一组,第一环左偏450,第二环不偏转,第三环右偏450。经过精确的计算校核,结果表明,第一方案的管片衬砌圆环受力合理,且变形能得到控制,故本投标设计推荐优先采用第一方案。

5.2.4衬砌管片制作要求

钢筋混凝土管片需要在高精度钢模内制造成型,

采用防水混凝土制作管片,管片混凝土强度等级C50,抗渗等级大于1.0MPa。混凝土应选择经过抗渗试验的合适的配合比,限制水泥用量。水灰比不大于0.45,并掺入不含氯化物的防水外加剂。管片在制作、吊运、堆放时应采取保护措施,防止管片碰撞损伤。

间间隙不得大于220+−mm;对应环向螺栓孔不同轴度小于1.0mm。衬砌表面应密实、光洁、平整,边棱完整无缺损。钢筋骨架须焊接成型,焊接强度与较小直径等强。钢筋落料长度以实际放样尺寸为准。每块管片的内弧面必须清晰地标注不会被磨损的管片号。如

(SF),(SL1),(SL2),等等。管片内外弧面混凝土净保护层厚度须控制在40mm范围。衬砌拼装前,应予以严格检查。止水密封片沟槽两侧及平面

衬砌制作应符合《混凝土工程施工及验收规范》及《地下铁道工程施工与验收规范》中的相应规定。

除标准环和楔形管片衬砌环(SRR和SLR)外,尚有站端接头环(SR0和SR1)、变形缝处环(SBR)

5.3.1隧道衬砌的计算模式说明

5.3.1.1计算模式

管片结构的内力及变形计算采用荷载――结构模式。目前国内对盾构隧道管片衬砌结构的截面内力计算,多以经验性为主的简化计算法为主。为保证计算准确可靠,本投标设计计算中,首先用简化的计算法(将管片衬砌结构简化为匀质圆环)进行参数的初步确定。其次采用精确计算法计算出截面内力(考虑各类接头位置与刚度、错缝时的环间相互咬合效应,及隧道与周围土体的实际相互作用关系)。然后对两者方法的计算结果进行比较。结果表明,简化计算法因不能明示接头位置,难于反映管片衬砌结构的实际受力状况(如考虑为匀质圆环时,不能反映圆环偏转某一角度后的截面内力及变形变化、不能计算错缝时的纵向接头的剪力等),计算结果受人为影响的因素较大。故本投标设计计算中,采用能考虑接头位置与刚度的精确计算法计算出截面内力,并以此进行各种检算。

盾构隧道管片衬砌结构的两种力学计算模式的具体情况如下:

将衬砌圆环考虑为弹性匀质圆环,用小于1的刚度折减系数η来体现环向接头的影响,不具体考虑接头的位置,即仅降低衬砌圆环的整体抗弯刚度。用曲梁单元模拟刚度折减后的衬砌圆,在本次计算中,η取0.55,0.65,0.75三种参数环。

同时,在计算中用大小1.0的系数ξ来表达错缝拼装引起的附加内力值,根据国内外经验,在本次计算中,ξ取为120%~130%作对比计算分析。

②考虑接头位置与刚度的精确计算法

在一衬砌圆环内,具体考虑环向接头的位置和接头的刚度,用曲梁单元模拟管片的实际状况,用接头抗弯刚度Kθ来体现环向

接头的实际抗弯刚度。为错缝式拼装时,因纵向接头将引起衬砌圆环间的相互咬合作用,此时根据错缝拼装方式,除考虑计算对象的衬砌圆环外,将对其有影响的前后的衬砌圆环也作为对象,采用空间结构进行计算,并用圆环径向抗剪刚度Kr和切向抗剪刚度Kt来体现纵向接头的环间传力效果。

在本计算中,根据采用的弯螺栓接头的受力情况,参照国内外有关试验研究结果(见:①DesignofSegment,JapanSocietyofCivilEngineering,1994.6。②圆形隧道装配式衬砌接头刚度模型研究,岩土工程学报,Vol.22,No.3),全部环向接头的抗弯刚度Kθ,在隧道内侧受拉时取为5×104kN•m/rad,隧道外侧受拉时取为3×104kN•m/rad。

另外,在本计算中,纵向接头的径向抗剪刚度Kr和切向抗剪刚度Kt均取为无穷大,即认为各环管片在纵向接头处不产生错动。

a.匀质圆环b.考虑接头的位置与刚度管片衬砌圆环计算的两种力学模式

5.3.1.2衬砌圆环与周围土体的相互作用

衬砌圆环与周围土体的相互作用通过设置在衬砌全环只能受压的径向弹簧单元和切向弹簧单元来体现,这些单元受拉时将自动脱离,弹簧单元的刚度由衬砌周围土体的地基抗力系数决定。

5.3.1.2荷载模式

管片的荷载模式在确定作用在隧道上方的土层压力方面,国内外视地层情况,主要采用卸拱理论(太沙基公式为主体)和按全部地层压力计算土层压力的方法,但均带有较大近似性。故国外也有取最小土压力不小于2D(当计算土压力小于此值时)的经验法。考虑到本次标段的最大和最小埋深分别在14m左右和9m左右,地层以粘性土层为主体,无单独从隧道底部贯通至地表的砂性土地层,故偏于安全地将上覆土体自重完全作用在隧道上进行计算分析,即计算中竖向地层压力按全部地层压力计算。而侧压力当隧道处于粘性土中时按水土和算考虑,在砂性土地层时按水土分算考虑。除土水压力外,实际的计算荷载按施工和使用阶段可能出现的其它最不利荷载组合进行结构强度、变形计算,同时对混凝土裂缝宽度进行验算。

5.3.2设计计算条件

5.3.2.1管片特征

隧道外半径R1=3.05m

隧道中心半径R2=2.9m

隧道内半径R3=2.75m

管片配筋为:外侧6φ12+6φ10,内侧10φ12,均为Ⅱ级钢

封顶块管片圆心角为22.5°,其余5块管片圆心角均为

67.5°。管片衬砌环在纵向按错缝式拼装,纵向接头为16处,按

选两环为一组,左偏11.25°,右偏11.25°的错缝拼装方案为主

体进行各项检算。在具体的计算过程中,取出三环管片进行空间

计算,检算对象为中间一环。

的特征等条件,参照地质报告,选取可能出现最不利受力情况的四个典型断面进行计算,四个计算点的主要土质特征条件汇总于下表。

从上至下分别为素填土(粘土)、砂砾、粘土、砾质粘性土。隧道位于砾质粘性土层中。常时稳定水位6.9m。

从上至下分别为素填土(粘土)、中砂、砂砾、砾质粘性土。隧道位于砂砾层中。常时稳定水位6.5m。

从上至下分别为素填土(粉质粘土)、中砂、粉质粘土、砾质粘性土、全风化花岗岩、强风化花岗岩、隧道1/3位于砾质粘性土层、1/3位于全风化花岗岩层、1/3位于强风化花岗岩层中。常时稳定水位4m。

从上至下分别为素填土(粉质粘土)、粉质粘土、砾质粘性土。隧道位于砾质粘性土层中。常时稳定水位3.8m。

计算地下水位埋深(m)

按地质报告各层推荐值计算

按地质报告各层推荐值计算

按地质报告各层推荐值计算

DB62/T 3158-2019标准下载按地质报告各层推荐值计算

地面超载(kN/m2)

地基抗力系数※(kN/m3)※※

砾质粘性土35000全风化花岗岩70000强风化花岗岩90000

为隧道所处地层之值,地基抗力系数偏于安全地没有计及管片周围注浆引起的地层抗力系数增大的影响。

冬季施工方案及施工保证措施.doc5.3.2.3荷载标准计算1、荷载分类荷载分类

©版权声明